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A large deviation technique is applied to the mean-field �4 model, providing an exact expression for the
configurational entropy s�v ,m� as a function of the potential energy v and the magnetization m. Although a
continuous phase transition occurs at some critical energy vc, the entropy is found to be a real analytic function
in both arguments, and it is only the maximization over m which gives rise to a nonanalyticity in ŝ�v�
=supm s�v ,m�. This mechanism of nonanalyticity-generation by maximization over one variable of a real
analytic entropy function is restricted to systems with long-range interactions and has—for continuous phase
transitions—the generic occurrence of classical critical exponents as an immediate consequence. Furthermore,
this mechanism can provide an explanation why, contradictory to the so-called topological hypothesis, the
phase transition in the mean-field �4 model need not be accompanied by a topology change in the family of
constant-energy submanifolds.
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I. INTRODUCTION

The theory of phase transitions has been an active field of
research for many decades already. Despite several remark-
able achievements on both the conceptual and the applied
sides, there still remain open questions galore. As a contri-
bution to the conceptual side, a recent and promising pro-
posal is the topological approach to phase transitions, con-
necting the occurrence of a phase transition to certain
properties of the potential energy function vN, resorting to
topological concepts. Among the remarkable features of this
approach we mention the following.

�1� Topology is in some sense a very reductional level of
description. Compared to a geometric description of the
same object, lots of information is disregarded in topology.
So the topological approach is an attempt to trace back the
occurrence of a phase transition to more fundamental quan-
tities than the measures in state space commonly considered.

�2� The microscopic Hamiltonian dynamics of a system
can be linked via the maximum Lyapunov exponent to topo-
logical quantities �1�. These topological quantities, in turn,
are linked to the occurrence of a phase transition by the
topological approach. In this way, a connection is established
between phase transitions on the one hand and the underly-
ing microscopic dynamics of the system on the other hand.

The topological approach is based on the hypothesis �2�
that phase transitions are related to topology changes of a
family �Mv� of certain submanifolds Mv of the configuration
space of the system. For a system with N degrees of freedom,
the Mv consist of all points � of the configuration space � for
which the potential energy vN��� per degree of freedom is
smaller than or equal to a certain level v,

Mv = �� � ��vN��� � v� . �1�

�Or, in a related version, the topology of submanifolds �v
= ���� �vN���=v� is considered.� The hypothesis then con-

jectures that a topology change within the family �Mv� at v
=vc is a necessary condition for a thermodynamic phase tran-
sition to take place at vc �or at the corresponding critical
temperature Tc=T�vc��. This hypothesis has been corrobo-
rated by numerical and exact results for a model showing a
discontinuous phase transition �3,4� as well as for systems
with continuous phase transitions �1,5–11�. A major achieve-
ment in the field is the recent proof of a theorem, stating,
loosely speaking, that, for systems described by smooth,
finite-range, and confining potentials, a topology change of
the submanifolds Mv is a necessary criterion for a phase
transition to take place �12,13�.

Recent results on the configuration space topology of the
mean-field �4 model have cast some doubt on the general
relevance of topology changes for the occurrence of phase
transitions. It was first observed in Ref. �14� that, for this
model with some sufficiently large coupling constant, the
potential energy vc at which the thermodynamic phase tran-
sition takes place does not coincide with the potential energy
corresponding to any of the topology changes of �Mv�. Inde-
pendently, this result was confirmed in Ref. �15�. The dis-
crepancy between the critical energies from thermodynamics
and from topology provoked quite some speculations in the
literature �14,16�.

In the present paper, an explanation for this discrepancy is
given. The explanation is based on the observation that a
topology change in the family �Mv� is one possible mecha-
nism to entail a thermodynamic singularity. The theorem of
Refs. �12,13� then states that for systems with smooth, finite-
range, and confining potentials, a topology change is the only
mechanism to generate such a singularity. We individuate a
further singularity-generating mechanism, namely a maximi-
zation over one of the variables of a real analytic entropy
function �32�, which occurs in the mean-field �4 model. The
availability of this mechanism accounts for the fact that the
phase transition in this model need not be, and in fact is not,
related to the topology changes observed. This second
singularity-generating mechanism is by no means restricted
to the mean-field �4 model, but is genuine to systems with
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long-range interactions, impossible to take place in short-
ranged ones. Not only can this maximization over a real
analytic function account for the absence of a relation be-
tween thermodynamic and topological quantities, it also
leads generically to the so-called mean-field �or classical�
critical exponents �=0, �= 1

2 , . . . in case of a continuous
phase transition.

To the purpose of illustration of this singularity-
generating mechanism, we present an analysis of the micro-
canonical entropy function of the mean-field �4 model,
which could stand also as a result of interest on its own. The
entropy s is derived from a large deviation principle, a pow-
erful tool from probability theory. As a function of the po-
tential energy v and the magnetization m, the entropy is
found to be real analytic, and only the maximization over m
generates a nonanalyticity in ŝ�v�.

After fixing some notation in Sec. II, the microcanonical
entropy s of the mean-field �4 model is computed in Sec. III.
This result is confronted with the canonical one in Sec. IV,
where in particular the �non�equivalence of these statistical
ensembles is investigated. In Sec. V, part of the results on the
topology of the Mv from Refs. �14–16� is reviewed, and the
relation to thermodynamic quantities is discussed. Section VI
is devoted to two different ways in which a thermodynamic
singularity can be generated: by topology changes in the Mv,
or by maximization over one of the variables of a real ana-
lytic entropy function. In the final Sec. VII, we comment on
the general applicability of our results to long-range systems,
as well as on the altered perspective from which the topo-
logical approach to phase transition has to viewed as a con-
sequence.

II. MEAN-FIELD �4 MODEL

The Ginzburg-Landau or field-theoretic �4 model plays a
prominent role in the theory of critical phenomena, mainly
due to the fact that it provides a unifying description of vari-
ous, physically different, lattice and continuum systems near
criticality �see �17� for an introduction�. Here we study a
lattice version of this model, where the degree of freedom
associated with the ith lattice site is characterized by a scalar
variable �i�R. As an analytically tractable caricature of
physically relevant long-range forces, we consider mean
field-like interactions, where all degrees of freedom interact
with each other at equal strength. For such a system consist-
ing of N degrees of freedom, the Hamiltonian function
HN :R2N→R is given by

HN��,�� =
1

2�
i=1

N

�i
2 + N�vN���� , �2�

where �= ��1 , . . . ,�N� is the vector of momenta conjugate to
�= ��1 , . . . ,�N�. The potential energy is given by

vN��� = zN��� −
J

2
�mN����2. �3�

It consists of an on-site potential

zN��� =
1

N
�
i=1

N 	−
1

2
�i

2 +
1

4
�i

4
 �4�

and a coupling term with coupling constant J and magneti-
zation

mN��� =
1

N
�
i=1

N

�i. �5�

vN, zN, and mN are all functions from RN onto the reals.
Typically, a coupling term −hm��� to a symmetry breaking
magnetic field h is added to the Hamiltonian �2�. Since we
are interested in the zero-field situation, such a term will here
be omitted.

Canonical thermodynamic quantities of the mean-field �4

model have been computed in Refs. �18,19�. We will make
reference to these results when discussing ensemble
�non�equivalence in Sec. IV.

III. MICROCANONICAL ENSEMBLE

In the microcanonical ensemble, the natural starting point
for thermodynamics is the entropy. For our purposes, we are
interested in the thermodynamic limit of the configurational
entropy, i.e., the contribution of the kinetic term in �2� to the
entropy is disregarded. We will compute and discuss two
different—but closely related—entropy functions, the first
being a function of the potential energy and the magnetiza-
tion,

s�v,m� = lim
N→	

1

N
ln �

RN
d�
 �v − vN����
 �m − mN���� ,

�6�

where 
 denotes the Dirac distribution. The second entropy
function we consider depends only on the potential energy,

ŝ�v� = lim
N→	

1

N
ln �

RN
d� 
 �v − vN���� , �7�

and can be obtained from s�v ,m� by maximization,

ŝ�v� = sup
m

s�v,m� . �8�

This leaves the calculation of s�v ,m� as the main task of this
section. Before doing so, we want to say a few words about
how a phase transition manifests itself in the microcanonical
entropy.

A. Microcanonical entropy and phase transitions

In the canonical ensemble, a possible �and commonly ac-
cepted� definition of a phase transition is the presence of a
nonanalyticity in the canonical free energy. In the microca-
nonical ensemble, conditions on the microcanonical entropy
s for the existence of a phase transition are somewhat less
established. An obvious way to start is to look for conditions
on s which, in the case of ensemble equivalence, correspond
to the definition of a phase transition from the canonical free
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energy density. Such conditions are �1� the existence of an
open subset of the domain of s on which the entropy is not
strictly concave, or �2� a nonanalyticity in s.

Then it might appear reasonable to adopt the same condi-
tions also for systems for which equivalence of ensembles
does not hold. So in order to identify phase transitions in the
microcanonical ensemble, we will focus on concavity and
analyticity properties of the entropy in the following.

B. Large deviation theory and microcanonical entropy

Large deviation theory is a branch of probability theory
which is concerned with events of very low probability. This
section provides an informal introduction as to how large
deviation theory can be applied to calculate the microcanoni-
cal entropy.

Let XN= �X1 ,X2 , . . . ,XN� be a sequence of N independent
and identically distributed random variables Xi�Rn with
empirical mean

SN�XN� =
X1 + X2 + ¯ + XN

N
�9�

and mean �=E�Xi�, where E�·� denotes the expectation
value. The strong law of large numbers then states that the
probability density to find SN�� converges to zero as N
goes to infinity. The theory of large deviations deals with the
form of this convergence. Provided existence of the generat-
ing function E�e�t,X�, the rate function I is defined as the
Legendre-Fenchel transform

I�x� = sup
t�Rn

��t,x − ln E�e�t,X�� , �10�

where �·,· denotes the Euclidean scalar product. Then
Cramér’s theorem �theorem I.4 in �20�� states that the prob-
ability P to find the empirical mean SN� �x ,x+dx� con-
verges exponentially,

P�SN � �x,x + dx�� = e−NI�x�dx �11�

in the limit N→	, or, equivalently,

− I�x� = lim
N→	

1

N
ln P�SN � �x,x + dx�� , �12�

and SN is said to satisfy a large deviation principle.
The connection to statistical physics is made by observing

that the microcanonical entropy of a system with N degrees
of freedom, described by generalized coordinates Xi�Rn, is
defined as

sN�x� =
1

N
ln �

RNn
dXN
 �x − SN�XN�� . �13�

The integral in this equation quantifies the volume in state
space RNn occupied by microstates XN= �X1 ,X2 , . . . ,XN�
which are compatible with a certain macrostate x. If P�SN

� �x ,x+dx�� is the probability to find the system in a state
with SN� �x ,x+dx�, the proportionality of this integral to
P�SN� �x ,x+dx�� follows immediately from the assumption
of equal a priori probability of the microstates, which is at

the very basis of equilibrium statistical mechanics. The pro-
portionality constant results in a physically irrelevant sum-
mand in the entropy and is omitted, leading to the expression

s�x� = lim
N→	

1

N
ln P�SN � �x,x + dx�� �14�

for the entropy in the limit of large N. Provided our problem
satisfies a large deviation principle, the microcanonical en-
tropy s�x� for N→	 is identical to the negative rate function
−I�x� from Eq. �10�. The equal a priori probabilities are re-
flected in the choice of independent, identically distributed
random variables Xi. This allows to rewrite the high-
dimensional integral in �13� as one single integration [the
expectation value E�e�t,X� in �10�] and a maximization,

s�x� = − sup
t�Rn

†�t,x − ln E�e�t,X�‡ . �15�

ln E�e�t,X� is strictly convex and infinitely many times dif-
ferentiable �see proof of theorem I.4 in �20��. Therefore,
there is at most one maximizer tx, and the derivative of the
argument of the supremum in �15� has to be zero. As a con-
sequence, tx is determined by the equation

xE�e�tx,X� = E�Xe�tx,X� , �16�

and the maximization can be rewritten as

s�x� = − �tx,x + ln E�e�tx,X� . �17�

Note that −I�x�, and therefore s�x�, are smooth and strictly
concave on their domain �lemma I.14 in �20��.

In �21,22�, a more extensive discussion of the application
of large deviation theory in statistical physics, including a
detailed account of the properties of the rate function I�x�, is
given in a language well accessible to readers with a physics
background. A mathematical treatment of large deviation
theory can be found in �20,23�.

C. The �4 model without interaction

We are interested in the entropy s�v ,m� as a function of
the potential energy v and the magnetization m as defined in
�6�. As a first step, applying the concepts of large deviation
theory, we compute a related entropy function s̃�z ,m� in this
section, where z is the variable associated with the on-site
potential zN defined in �4�. From s̃�z ,m�, we then obtain the
desired s�v ,m� by a simple transformation of variables. In
the notation of Sec. III B, we choose x= �z ,m��R2. The ad-
equate empirical mean SN= (zN��� ,mN���) is made up from
�random� microscopic variables Xi= � 1

4�i
4− 1

2�i
2 ,�i�. We fur-

ther assume uniformly distributed particles with probability
density p��i=��=1/ �2�c�∀�� �−�c ,�c� and 0 elsewhere.
Then, the conditional equation �16� for tx= �tz , tm� leads to

z =
1

4
�4�tz,tm� −

1

2
�2�tz,tm�

m = �1�tz,tm� �18�

with parameter integrals
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�k�tz,tm� =

�
−�c

+�c

d ��ketm�+tz„�1/4��4−�1/2��2
…

�
−�c

+�c

d �etm�+tz„�1/4��4−�1/2��2
…

. �19�

Inserting the solution tz�z ,m�, tm�z ,m� of the system of equa-
tions �18� into �17� yields the microcanonical entropy for the
noninteracting �4 model,

s̃�z,m� = − tz�z,m�z − tm�z,m�m

+ ln �
−�c

+�c

d �etm�+tz„�1/4��4−�1/2��2
…, �20�

where we let �c tend to infinity in the following.
An analytic solution of �18�, and therefore of the entropy

s̃ in �20�, is not possible in general. Instead, we will state—
without proof—some of the properties of s̃. From the defini-
tion �4� of the on-site potential one obtains immediately z
��− 1

4 ,	� for the range of z. For any fixed z− 1
4 , values in

the range �−mmax�z� , +mmax�z�� are accessible for the magne-
tization m. The extremal values mmax�z� are defined by the
equation

z =
1

4
mmax

4 −
1

2
mmax

2 �21�

and correspond to states in which all degrees of freedom �i
take on the same value. This characterizes the domain of s̃ as
illustrated in Fig. 1.

According to the previous section, s̃�z ,m� is strictly con-
cave and analytic on its domain. Taking into account the
symmetry of the model �invariance of zN��� under substitu-
tion �→−��, it follows that s̃�z ,m� is maximal at m=0 for
any given z− 1

4 �see Fig. 1 for an illustration�.

D. Microcanonical entropy of the mean-field �4 model

So far we have considered the mean-field �4 model with-
out interparticle interaction. Turning on this interaction
changes the potential energy of the system from zN to vN

=zN− �J /2�mN
2 . This relation allows to derive the desired en-

tropy function

s�v,m� = s̃ 	v +
J

2
m2,m
 �22�

of the interacting system from the above computed s̃�z ,m� by
a simple transformation of variables.

The smooth transformation of variables in �22� retains the
analyticity of s̃�z ,m�, so s�v ,m� is again an analytic function.
In order to see whether the concavity property is conserved
as well, we distinguish the two cases of, respectively, nega-
tive and positive coupling J.

J�0: Let H f denote the Hessian of some function f . Us-
ing �22�, we can calculate the determinant

det Hs = det Hs̃ + J
�2s̃�z,m�

�z2

�s̃�z,m�
�z

. �23�

The concavity of s̃ implies that det Hs̃�0 and
�2s̃�z ,m� /�z2�0. If we further take into account that
�s̃�z ,m� /�z=−tz�0, it follows that det Hs�0 for J�0,
therefore Hs is negative definite and s�v ,m� is again a strictly
concave function. From the symmetry of the model it fol-
lows that, for any fixed value of v, there is a unique maxi-
mum at m=0. Then the entropy as a function of v only,
ŝ�v�=supms�v ,m�=s�v ,0�, is likewise analytic and concave,
and no phase transition is found to take place for antiferro-
magnetic coupling J�0. In the following we will focus on
the more interesting ferromagnetic case.

J�0: For arbitrary positive coupling J, the domain of s is
no more a convex set �see Fig. 2�, so s is not a concave
function, and we expect a phase transition to take place.

Numerically, we find that for fixed values of v above a
critical value vc, s�v ,m� attains its maximum at magnetiza-
tion m=0, whereas below vc there is a minimum at m=0 and
two maxima occur at nonvanishing values of m �Fig. 2�. In

FIG. 1. Contour plot of the entropy s̃�z ,m� on its domain �gray�
from a numerical evaluation of �20�. The entropy is a concave func-
tion and minimal on its boundary for maximum m.

FIG. 2. Contour plot of the entropy s�v ,m� for coupling constant
J=1. The gray �light and dark� hatched area is the domain of s, dark
gray is used for what is obtained from a deformation �variable
transform� of the part visible in Fig. 1. The dashed line marks the
position of the maximum of s with respect to m for every fixed
value of v.
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order to track down the transition point, we expand the en-
tropy s in m around m=0, yielding

s�v,m� = s�v,0� −
1

2
	J�z�v,0� +

1

�2„�z�v,0�,0…
m2 + O�m4� ,

�24�

where �z�v ,m�= tz(v+ �J /2�m2 ,m). Here, O denotes Landau’s
order symbol, and the integral

�2��z,0� =
1

2�1 +

I−3/4	−
�z

8

 + I3/4	−

�z

8



I−1/4	−
�z

8

 + I1/4	−

�z

8

� �25�

as defined in �19� can be expressed in terms of modified
Bessel functions of the first kind Ik. The transition point is
marked by a change of sign of the coefficient of the quadratic
term in �24�, so the critical energy is given via Eq. �18� by
vc=z��zc

,0�, where �zc
is determined implicitly by

J�zc
�2��zc

,0� = − 1. �26�

Making use of this equation and the identity

�4�tz,0� = �2�tz,0� −
1

tz
, �27�

the critical energy can be expressed as

vc�J� =

1

J
− 1

4�zc
�J�

�28�

where the dependence of vc and �zc
on the coupling constant

J has been indicated. We can immediately read off that
vc�1�=0 and, since �zc

�0, that vc�0 for all J�1. Solving
explicitly for �zc

or vc appears to be infeasible, but we can
derive asymptotic expansions for large and small coupling J,
respectively.

Small J�0: The asymptotic expansion of �25� for large
−�zc

yields

�2��zc
,0� =

− 4�zc
− 1

− 4�zc
+ 3

+ O��zc

−2� . �29�

Inserting this result into �26� and �28�, an expansion of the
critical energy in the limit of small coupling J can be ob-
tained,

vc�J� = −
1

4
+

1

2
J + O�J2� . �30�

Large J�0: Analogously to the preceding paragraph, ex-
pansion of �26� for small negative �zc

yields an expression
for the critical energy in the limit of large J,

vc�J� = a2J2 − 	2a2 −
1

4

J + 	5a2

4
−

3

8
+

1

64a2
 + O	1

J

 ,

�31�

with a=�� 3
4

� /�� 1
4

��0.338.

In Fig. 3, the numerically computed behavior of the criti-
cal energy vc as a function of the coupling J is confronted
with the asymptotic expansions �30� and �31�. Note that, for
large enough J, the critical energy takes on positive values,
as in fact it is divergent in the limit of large J. This observa-
tion will be of importance for the discussion of the relation
between phase transitions and the topology of configuration
space submanifolds in Sec. V.

E. Reduced entropy ŝ„v…

In Sec. III D, the entropy s�v ,m� was found to be an
analytic function. If we release the control parameter m, the
system will maximize its entropy to ŝ�v�=supms�v ,m�, and
we will discuss the analyticity properties of this latter func-
tion in the present section. Since s�v ,m� is minimal at its
boundary, a vanishing first derivative with respect to m is a
necessary and sufficient condition for the extremalization.
From �20� and �22� we find the extremizing values of the
magnetization m̂=�1��̂z , �̂m� to be determined by

�1��̂z, �̂m� = −
�̂m

J�̂z

. �32�

The numerical solution of this equation is plotted in Fig. 4.
As expected from symmetry considerations, Eq. �32� is trivi-
ally solved by �̂m=0 ∀�̂z�R−, so m̂=0 is always an extre-
mum. The Taylor expansion in �24� revealed that this solu-
tion corresponds to a maximum for �̂z��zc

and to a
minimum for �̂z��zc

. Numerics ascertain that, for �̂z��zc
,

the maximum at m̂=0 is a global one, and the system is

FIG. 3. Critical energy vc as a function of the coupling constant
J from numerical computation �dots�, confronted with the two
asymptotic expansions �30� and �31�.

FIG. 4. Numerical solution of the extremalization condition �32�
for J=1. �̂m=0 is a solution for any �̂z�0. Below the critical value
�zc

there are two further solutions.
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found to be in a paramagnetic phase. For �̂z��zc
two addi-

tional solutions ±�̂m��̂z� appear. These solutions correspond
to two maxima at m̂= ��̂m��̂z� / �J�̂z��0 and reveal the sys-
tem to be in a ferromagnetic phase. The transition between
the two phases is a continuous one �see dashed line in Fig.
2�. The critical exponent � governing the asymptotic behav-
ior of the magnetization in the vicinity of the transition point
can be calculated analytically and is found to be �= 1

2 . In the
Appendix, we show that the occurrence of classical ��mean-
field� values of the critical exponents can be traced back to
the analyticity of the entropy function s�v ,m�, not only in the
case of the mean-field �4 model, but generically for mean-
field-like systems.

In conclusion, the entropy ŝ�v� as a function of the poten-
tial energy only is given by

ŝ�v� = �s�v,0� for v � vc,

s	v,−
�m��z�

J�z

 for v � vc, � �33�

where �z is determined by

v =
1

4
�4„�z,�m��z�… −

1

2
�2„�z,�m��z�… −

��m��z��2

2J�z
2 . �34�

A nonanalyticity corresponding to a continuous phase transi-
tion occurs at v=vc.

IV. ENSEMBLE (NON) EQUIVALENCE

Results for the mean-field �4 model from computations
within the canonical ensemble have been reported in the lit-
erature, showing the system to undergo a continuous phase
transition �16,18,19�. Under suitable conditions, the different
Gibbs ensembles, like the microcanonical and the canonical
one, are known to lead to identical numerical values for the
typical system observables of interest in the thermodynamic
limit N→	. In this case, one speaks of equivalence of en-
sembles. For a large class of systems with short-ranged in-
teractions, equivalence of the microcanonical and the canoni-
cal ensemble is known to hold �24,25�. A system with mean-
field-like interactions like the one considered here is clearly
not in this class. Nevertheless, comparing the microcanonical
result for the critical energy vc obtained in the previous sec-
tion with the canonical one reported in �16,19�, we observe
that the expressions are identical. This is not at all unex-
pected, as the theorem of Gärtner and Ellis �23� guarantees
equivalence of the microcanonical and the canonical en-
semble �on the thermodynamic level we are interested in
here; see �26� for a precise definition� whenever there is no
discontinuous phase transition in the canonical ensemble
�21�.

Therefore, we observe equivalence between the reduced
microcanonical entropy ŝ�v� and the canonical free energy

f̂��� as a function of the inverse temperature �. However, for
s�v ,m� and the corresponding canonical quantity, the free
energy f�� ,h� as a function of � and a magnetic field h,
equivalence does not hold. States inside the convex region of
s �the interior of the dashed parabola-like curve in Fig. 2� are

inaccessible within the canonical ensemble, and, as a conse-
quence, the analyticity of the microcanonical entropy
s�v ,m�—which will be essential for our discussion of the
relation between phase transitions and the topology of con-
figuration space submanifolds—cannot be inferred from ca-
nonical results.

V. TOPOLOGY OF CONFIGURATION SPACE
SUBMANIFOLDS

The topology of the configuration space submanifolds Mv
as defined in �1� has been analyzed for the mean-field �4

model in Refs. �14–16� in the framework of Morse theory.
To this aim, critical points �33� of the potential energy func-
tion �3� were determined, i.e., points �c�RN at which the
exact differential of vN vanishes,

dvN��c� = 0. �35�

For a given coupling constant J0, all critical values vN��c�
were found to lie within a finite interval,

vN��c� � �−
1

4
�J + 1�2,0� , �36�

independently of the number N of degrees of freedom. The
observation vN��c��0 is already sufficient for our purposes,
as the non-critical neck theorem �27� then guarantees that the
topology of the Mv remains unchanged for all v�0. Recall-
ing the observation from Sec. III D that the critical potential
energy vc of the phase transition can attain arbitrarily large
values, well above the zero upper bound of the critical values
of vN, we are led to conclude that the phase transition is
found to be uncorrelated with any of the topology changes
occurring in the family �Mv� of configuration space submani-
folds, at least for large enough coupling constant J.

VI. SINGULARITY-GENERATING MECHANISMS

The reason why, as observed in the preceding section, the
phase transition of the mean-field � model need not be re-
lated to the topology changes in the Mv is the existence of a
further singularity-generating mechanism. This mechanism is
the maximization over the magnetization m in Eq. �8� of the
real analytic entropy function s�v ,m�, which can result—and
indeed does so for the mean-field � model—in a nonanalytic
ŝ�v� �34�. In the present section, we will explain why this
mechanism is restricted to systems with long-range interac-
tions. Furthermore, it is argued that a topology change in the
Mv generates a thermodynamic singularity on a more funda-
mental level. Although a speculative argument, we believe
that it illustrates the essential difference between the two
singularity-generating mechanisms discussed. For the mo-
ment, we will restrict ourselves to continuous phase transi-
tions, but modifying the argument as to apply to discontinu-
ous transitions is straightforward.

In Fig. 2, the typical shape of the entropy s�v ,m� of a
long-range system in the presence of a symmetry breaking
continuous phase transition with some order parameter m is
shown: two maxima in s�v ,m� with respect to m at potential
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energies v below the critical energy are opposed to a single
maximum at potential energies above the critical energy. As
illustrated in Sec. III for the mean-field �4 model, even an
analytic entropy function s�v ,m� can entail such a phase
transition.

This is different for a system with short-range interactions
�35�. In this case, the entropy as a function of some macro-
scopic variables v ,m ,x , . . . is known to be a concave func-
tion �25�, and the typical shape of s�v ,m� in the presence of
a phase transition is obtained by taking the concave hull of a
long-range system’s entropy �see Fig. 5 for an illustration�.
Due to its concavity, the entropy s is nonanalytic not only as
a function of v only, but the same holds true for s�v ,m� or
for s�v ,x� for some typical macroscopic quantity x.

We will try to trace back the difference between the long-
range and the short-range case to the integrals governing the
entropy functions. We use a co-area formula from �28� to
rewrite Eq. �7� as

ŝ�v� = lim
N→	

1

N
ln �

�Mv

d�

��vN�
�37�

with norm

��vN� =��
i=1

N 	 �vN���
��i


2

. �38�

�Mv=�v denotes the boundary of Mv. Similarly, the entropy
as a function of v and x �with x=m yielding Eq. �6� as a
special case� can be expressed as

s�v,x� = lim
N→	

1

N
ln �

�Mv

d�

��vN�

 �x − xN���� , �39�

with some smooth function xN :RN→R corresponding to the
macroscopic variable x. Then the above discussed analyticity
properties of the entropy functions have the following impli-
cations for the integrals in �37� and �39�.

For the case of short-range interactions, we observed
above that, in the presence of a phase transition, ŝ�v� as well
as s�v ,x� are necessarily nonanalytic, regardless of the par-
ticular form of xN. So if its not the form of the integrand

which is crucial, we are led to conjecture that it is the domain
of integration �Mv, and in particular some topology change
in the Mv, which accounts for the nonanalyticities in ŝ�v� and
s�v ,x�. This argument is consistent with the theorem in Refs.
�12,13�, proving the necessity of a topology change for a
phase transition to take place for a certain class of short-
range systems.

For systems with long-range interactions, we found that a
nonanalytic ŝ�v� can emanate from an analytic s�v ,m�. In
this case, as opposed to our reasoning for short-ranged sys-
tems, the emergence of a nonanalyticity in the thermody-
namic limit N→	 appears to depend on the shape of the
integrand, not on the domain of integration �Mv. This ex-
plains on a heuristic level why, for systems with long-range
interactions, a phase transition is not necessarily connected
to a topology change in the family �Mv� of configuration
space submanifolds.

The major difference between the two singularity-
generating mechanisms is that a topology change in �Mv�
may lead to a nonanalyticity, regardless of the particular
choice of arguments of the entropy function, which is obvi-
ously not true for a singularity stemming from a maximiza-
tion over one of the variables of an analytic entropy function.
It is in this sense that by a topology change a nonanalyticity
is generated on a more fundamental level.

VII. SUMMARY AND CONCLUSIONS

Applying a large deviation technique, we have obtained
an exact expression for the microcanonical �configurational�
entropy s of the mean-field �4 model as a function of the
potential energy v and the magnetization m. Although the
system undergoes a continuous phase transition at some criti-
cal energy vc, the entropy s�v ,m� is found to be an analytic
function in both variables. Only the reduction ŝ�v�
=supms�v ,m� to an entropy function of one variable gives
rise to a nonanalyticity, corresponding to the phase transition
of the model.

As expected, the phase transition is found to be governed
by classical ��mean-field� critical exponents �=0, �= 1

2 , . . ..
The occurrence of these values can be traced back to the
analyticity of the entropy s�v ,m�, not only in the case of the
mean-field �4 model, but also generically for systems with
mean-field-like interactions.

A topology change within the family �Mv� of configura-
tion space submanifolds Mv �as defined in �1�� is known to
be a mechanism which can give rise to a nonanalyticity in
some thermodynamic potential, thus entailing a phase transi-
tion. The observed analyticity properties of the entropy func-
tions allow us to individuate the maximization over one vari-
able of an analytic entropy function as a further such
mechanism. For the mean-field �4 model, the topology
changes were found to be unrelated to the phase transition.
This, previously unexpected, observation can be explained
by the presence of this second singularity-generating mecha-
nism. Concavity of the entropy of short-range systems re-
stricts the mechanism of singularity generation by such a
maximization to systems with long-range interactions.

FIG. 5. Sketch of a typical entropy function s�v ,m� of a system
with short-range interactions showing a continuous phase transition.
The shape is qualitatively that of the concave hull of the entropy of
a long-range system �like the one depicted in Fig. 2�. The dashed
line marks the spontaneous magnetization.
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We want to conclude with a remark on the implications
the results of this article have for what we called the topo-
logical approach to phase transitions in the Introduction. The
identification of a topology change in the Mv as one out of
two, or several, mechanisms to produce a thermodynamic
singularity alters profoundly the perspective from which the
topological approach has to be viewed. Clearly, in its gener-
ality, the above mentioned topological hypothesis �2� has to
be discarded: in general, a topology change in the Mv at
some potential energy v=vc is not necessary for a phase
transition to take place at vc. But this does not diminish the
interest in the topological approach. Instead, the classifica-
tion of phase transitions according to the mechanism by
which the thermodynamic singularity is generated opens up
as a perspective, with topology changes in configuration
space being one—for short-range systems possibly the most
prominent one—among these mechanisms. In addition to the
two singularity-generating mechanism discussed in this ar-
ticle, there are indications for at least one further such
mechanism: also in short-range systems with non-confining
potentials, a topology change does not appear to be neces-
sary for the existence of a phase transition �29�, while at the
same time the maximization mechanism is excluded due to
the short-rangedness. One might conjecture that it is the fact
that, as a consequence of the potentials being non-confining,
the domains of integration in Eqs. �37� and �39� are non-
compact manifolds, which might render a third singularity-
generating mechanism possible, but this point requires fur-
ther investigation.
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APPENDIX: CRITICAL EXPONENTS FOR MEAN
FIELD-LIKE SYSTEMS

In this appendix, we show that generically �in a sense
which will become clear in the following� classical ��mean-
field� values follow from the analyticity of the entropy s. The
mean-field �4 model can then be proved explicitly to be such
a generic case by showing that certain coefficients of a Tay-
lor expansion of s do not vanish. The calculation is very
much in the spirit of the Landau theory of phase transitions,
but applied to the entropy rather than the Landau free energy
functional.

We begin with the remark that the arguments of Sec. III
guaranteeing the analyticity of the entropy s�v ,m�, apply not
only to the mean-field �4 model, but to general mean-field-
like systems for which it is possible to express the potential
energy by means of macroscopic variables of the kind
�i=1

N gk��i� with some functions gk �36�. In fact, analyticity of
the entropy holds even for systems with more realistic long-
range forces, whenever the potential energy can be expressed

by macroscopic variables plus some remainder, vanishing in
the thermodynamic limit �see �22� for an example�.

In order to simplify the presentation, the following deri-
vation is formulated for systems which are symmetric with
respect to a �scalar� order parameter m, i.e., s�v ,m�=s�v ,
−m�, but a more general setting is possible. Assuming ana-
lyticity, s�v ,m� can be expanded into a Taylor series around
m=0,

s�v,m� = s�v,0� +
1

2!
f2�v�m2 +

1

4!
f4�v�m4 + O�m6� ,

�A1�

with f2�v�= ��2s /�m2�m=0 and f4�v�= ��4s /�m4�m=0. Odd or-
ders in m vanish due to the system’s symmetry. We will
understand by the above mentioned generic case that no co-
efficients in the expansion �with respect to both, m and v�
vanish accidentally, so we assume nonzero coefficients
throughout.

The extremizing values of the magnetization are deter-
mined by �s /�m=0. Applying this to �A1� leads to the trivial
solution m̂=0 and, for small m̂�0, to

m̂�v� � ±�−
3! f2�v�

f4�v�
�A2�

whenever the radical is positive. For the concept of critical
exponents to be meaningful, we assume a continuous phase
transition to take place. This implies f2�v� to be zero at some
critical point v=vc, and the expansions of f2 and f4 around vc
are of the form

f2�v� = f2��vc��v − vv� + O„�v − vc�2
… , �A3�

f4�v� = f4�vc� + O�v − vc� . �A4�

Inserting these expressions into �A2�, we obtain

m̂�v� � ±�−
3! f2��vc�

f4�vc�
�v − vc � �v − vc�1/2 �A5�

in leading order for the equilibrium magnetization in the vi-
cinity of the vc. Similarly, the asymptotic behavior of other
thermodynamic quantities can be determined from a generic
analytic entropy function �see �30� for derivations�. To obtain
critical exponents, the proportionalities to v−vc have to be
translated into proportionalities to the reduced temperature
t= �T−Tc� /Tc by means of the asymptotic relation v−vc

� t1−�, where � is the critical exponent of the specific heat.
In this way, we finally obtain a critical exponent �= 1

2 for the
equilibrium magnetization of a system with analytic entropy
s undergoing a continuous phase transition.

An elaborate but straightforward calculation confirms
that, for the mean field �4 model, the above conditions �A3�
and �A4� on f2 and f4 hold with f2� , f4�0, rendering this
model a representative of the class of generic systems with
classical critical exponents.
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